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ABSTRACT 

The i n i t i a l  results of the application of special  op t ica l  techniques t o  
emittance and reflectance studies of reentry heat-shield ablation material chars 
at high temperatures t o  determine t h e i r  effectiveness i n  radiation cooling are  
presented. A n  Arthur D. Little-Strong Arc I m a g i n g  Furnace and Image Pyrometer 
have been equipped with selected f i l t e r s  and detectors sui table  f o r  providing 
measurements of hemispherical spectral  reflectance on opaque materials at wave- 
lengths extending throughout t he  v i s ib l e  spectrum and in to  the near u l t rav io le t .  
Reflectance and emittance were determined fo r  carbon, graphite, zirconia, and 
a par t icu lar  ablation material char a t  wavelengths from 0.37 micron t o  
0.72 micron and f o r  temperatures from 3,000° F t o  6,0000 F. 
properties of the  materials were measured with a Carl Zeiss Light-Section 
Microscope and s t a t i s t i c a l l y  t reated.  
r e l i a b i l i t y  of t he  data a re  discussed. 

Surface-roughness 

The performance of the equipment and 
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INTRODUCTION 

A t  ve loc i t ies  associated with reentry into the ear th ' s  atmosphere from 
ear th-orbi ta l  o r  outer-space missions, f l i g h t  vehicles experience aerodynamic 
heating which produces surface temperatures above the melting o r  vaporization 
temperatures of conventional s t ructural  materials. 
have been devised i n  which ablating materials a r e  used effectively t o  protect 
the load-carrying structures of these vehicles. 
have been shown t o  be par t icular ly  effect ive f o r  use i n  thermal protection sys- 
tems (see refs .  1 and 2) because of t h e i r  capabili ty t o  reradiate a s ignif icant  
portion of the  heat absorbed. However, a detailed understanding of the complex 

Thermal protection systems 

Charring ablation materials 

~ 

The information presented herein i s  taken.from a thes i s  which w i l l  be 
offered i n  p a r t i a l  fulfillment of the  requirements f o r  the  degree Master of 
A r t s ,  The College of Willim and &Nary, WilllmaSiirg, 'Jirginia. 
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behavior of charring ablators requires extensive analytical  and experimental 
studies, including a determination of the emittance and absorptance character- 
i s t i c s  of the chars at performance temperatures. 

< 

The object of the present investigation w a s  t o  apply special  opt ical  tech- 
niques t o  emittance and reflectance studies on certain ceramic and carbonaceous 
materials, including a par t icular  ablation material char, over a range of wave- 
lengths and temperatures. The experimental apparatus used f o r  reflectance meas- 
urement consisted of  an Arthur D. Little-Strong Arc Imaging Furnace and an image 
pyrometer designed f o r  operation i n  conjunction with the arc  imaging furnace. 
Several f i l ter-detector  combinations were selected f o r  a range of wavelengths 
covering t h e  v i s ib le  and extending in to  the near u l t rav io le t  spectrum. 
i c a l  spectral  emittance (absorptance) values were calculated from the reflectance 
measurements. Suitable attenuation of arc  i r radiat ion of the  sample provided fo r  
measurements from about 3,0000 F t o  6,000~ F. Surface roughness of the  materials 
was  measured optically and w a s  s t a t i s t i c a l l y  t reated t o  qualify the  emittance 
data with regard t o  the surface properties of the  materials. 
t he  equipment and r e l i a b i l i t y  of the  data a re  discussed. 

Hemispher- 

The performance of 

DESCRIPTION OF METHODS AND APPARATUS 

Apparatus fo r  Measurement of Reflectance and Temperature 

The dependence of emittance on temperature and nonexistence of general 
theoret ical  relationships f o r  predicting emittance as a function of temperature 
make it impossible t o  calculate o r  accurately predict  high-temperature radiation 
properties from low-temperature data. Although measurement of e i ther  t o t a l  o r  
spec t ra l  emittance at high temperatures does not d i f f e r  i n  pr inciple  from tha t  a t  
low temperatures, there  are  problems associated with extending standard tech- 
niques of measurement t o  very high temperatures. 
comparison method, it i s  d i f f i c u l t  not only t o  obtain the  required high tempera- 
tu res  but also t o  measure radiation emitted by the sample only, excluding tha t  
emitted by hot furnace w a l l s  o r  ref lected by the  sample. O f  equal d i f f i cu l ty  i s  
the  construction of black-body cavi t ies  operational at  very high temperatures 
which are  known t o  be the  same as those of the  sample. The prac t icabi l i ty  of 
thermoelectric temperature measurements at high temperatures i s  l imited by the 
low melting points of thermocouple materials and the  suscept ib i l i ty  of thermo- 
couple materials t o  contamination by other materials. 

I n  using the  black-body- 

For the present investigation an a rc  imaging furnace with an integrated i m a g e  

This method circum- 
pyrometer w a s  u t i l i zed  t o  heat the  material samples and t o  determine the spectral  
emittance and temperature relationships a t  high temperatures. 
vents the problems noted above. 
i n  reference 3, and the i m a g e  pyrometer and i t s  pr inciples  of operation a re  
described by Cornstock i n  reference 4. B r i e f l y ,  the  a rc  imaging furnace, shown 
schematically i n  figure 1, consists of a double-ellipsoidal-mirror op t ica l  system 
with two 21-inch-diameter mirrors located coaxially and facing each other at  a 

The a rc  imaging furnace i s  described by Glaser 
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a distance of about 7 f ee t .  An e lec t r ic  a r c  radiation source i s  located at the 
minor focal point of one mirror and i t s  i m a g e  i s  formed a t  the minor focal  point 
of the  other mirror. A t  t he  minor focal plane of the re-imaging mirror there i s  
a sample support motorized f o r  movement i n  three mutually perpendicular directions 
t o  provide fo r  precise opt ical  alignment of the sample with respect t o  the  mirrors 
and arc. 

The image pyrometer, i l l u s t r a t ed  schematically i n  figure 2, is  an instrument 
designed f o r  operation between the two el l ipsoidal  mirrors of the arc  imaging 
furnace at  the  midplane where the  major focal points of the  mirrors coincide. 
The two coincident images of arc  and sample formed i n  the  midplane are  scanned 
by rotating l i g h t  pipes whose signals are fed through an opt ical  f i l t e r  t o  a 
photomultiplier. 
in to  an oscillographic recorder, producing radiation prof i les  across the i m a g e s  
o f - the  arc  and the sample. The image pyrometer incorporates a rapidly rotat ing 
chopper which provides f o r  scanning of t he  sample i n  rapid succession w i t h  the  
arc  radiation incident on t h e  sample and with the  arc  radiation br ie f ly  obstructed 
from the  sample. From the radiation prof i le  of the arc  and of the sample w i t h  
and without incident a rc  radiation, along with separate measurements on a standard 
reflectance sample and a standard temperature source, the  spectral  reflectance 
and temperature of the sample at every point across i t s  i r radiated surface can 
be calculated. 

The output of the  photomultiplier i s  then amplified and fed 

Apparatus f o r  Measurement of Surface Roughness 

Inasmuch as the  emittance of any material var ies  with surface conditions, 
it w a s  considered desirable i n  the  present investigation t o  define the  mocro- 
geometric properties of the material surfaces on which temperature and emittance 
were determined. A Carl Zeiss Light-Section Microscope w a s  chosen f o r  making the  
measurements because it permits measurements on so f t  materials without destroying 
o r  a l te r ing  the surface. 
measure surface roughness i s  described i n  reference 5 .  I n  the  Carl Zeiss instru- 
ment a microscope is  used f o r  the opt ical  measurement of the surface-profile i m a g e  
produced by the l ight-section method, as shown schematically i n  figure 3(a). The 
incandescent lamp Q illuminates the s l i t  S, which, by means of the  objective 01, 

i s  reproduced on the surface being studied as a t h i n  band of light. 
of l i g h t  closely follows and illuminates the  surface along i ts  contour, and a 
prof i le  image of the  surface may be observed and/or photographed through a micro- 
scope whose objective 02 has the  same magnification as 01. 
observation directions form a goo angle with each other and 450 angles with the  
surface being examined. A r e t i c l e  R, v i s ib le  i n  the eyepiece 0, may be shif ted 
within the f i e l d  of view by means of a micrometer drum. Because the l i gh t  band 
meets the surface at  an angle of 4 5 O  and is  observed a t  a r ight  angle t o  t h i s  
direction, a d is tor ted  prof i le  height h'  
of t h e  r ea l  p ro f i l e  height h. Obviously, 

One arrangement fo r  use of the  l ight-section method t o  

This band 

Illumination and 

(see f i g .  3 (b ) )  i s  observed instead 

JL = s i n  450 = 
h '  
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The f ac to r  
possible direct  reading of measured values i n  the direction of the  r ea l  p rof i le  
height as well as i n  the longitudinal direction of the  prof i le .  The instrument 
has a range capabili ty f o r  measurement of surface i r r egu la r i t i e s  from 1 t o  
400 microns i n  magnitude. 

E i s  accounted f o r  i n  the course of movement of the re t ic le ,  making 

Reflectance Measurement 

The principles of operation and measurement employed by the  image pyrometer 
are  given i n  reference 4. 
the calculations involved are  modified f o r  application t o  measurements over a 
range of wavelengths. To determine the temperature of the sample it i s  first 
necessary to  determine i t s  emittance. 

I n  the  following discussion they are  summarized and 

For an opaque sample 

where % and 5 are the spectral  absorptance and reflectance, respectively, 

and from Kirchoff's l a w  (see ref.  6) and equation (2), 

% E h = C I / A = l -  ( 3 )  

where i s  the spectral  emittance. The image pyrometer measures the spectral  
reflectance, from which the spectral  emittance i s  calculated by equation (3)  and 
used i n  the determination of sample temperature. 
measurement, the apparatus measures sequentially the a rc  l igh t ,  the  emitted plus 
ref lected l i gh t  from the sample, and the  emitted l ight from the  sample. 
difference between the last two measurements i s  the  ref lected l i g h t  from the  
sample.) 
the sample i s  br ie f ly  obstructed by the chopper. Interruption by the  chopper 
occurs every 65 milliseconds and the  duration of each interruption i s  about 
3 milliseconds. 

To accomplish the reflectance 

(The 

The emitted l i gh t  from the  sample i s  measured while a rc  i r rad ia t ion  of 

From the foregoing considerations the  spectral  emittance may be expressed 
as 

where 

q, = Reflected l i gh t  from an element of sample surface 

i h  = Incident l i gh t  on the  same element of sample surface 

K = A combined constant of the opt ica l  system 
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RA = Oscillographic indication of reflected l i gh t  from the  sample i n  ar3i t rary 
uni t s  

E+, = Oscillographic indication of emitted light from the  sample i n  arbi t rary uni ts  

Ah = Oscillographic indication of arc  l igh t  i n  the same arb i t ra ry  uni ts  

The constant K includes a measure of the fract ion of a rc  radiation i n  the  
midplane image tha t  i s  incident on the sample. 
by replacing the  sample with a water-cooled surface of known reflectance. Because 
the spectral  reflectance of freshly-deposited magnesium oxide has been extensively 
studied (see re fs .  7 t o  9), it was used i n  th i s  measurement program as a standard. 
I ts  diffuse reflectance throughout the visible spectrum i s  about 0.97. 

This constant may be determined 

The reflectance measurement of the image pyrometer i s  essent ia l ly  hemispher- 
i c a l  spectral, including specular and diffuse components, since the angle of col- 
l ec t ion  and re-imaging of the  arc  imaging furnace mirrors i s  170° (minus a s m a l l  
angle about the  axis of the  mirrors).  
approach t o  the  measurement of reflectance as it is  defined i n  i t s  s t r i c t e s t  
sense. The emittance determined is  essentially hemispherical spectral, since the 
complement of hemispherical emittance i s  reflectance under conditions of hemi- 
spherical illumination and hemispherical viewing. 

Hence, t h i s  apparatus makes a close 

Temperature Calculation 

Calculation of the temperature of the sample requires comparative measure- 
ments between radiation from the sample and that from a standard temperature 
source. 
accurately-determined temperature. 
the  sample and f o r  the standard lamp. 
here since the m a x i m u m  e r ror  introduced, f o r t h e  range of wavelengths and tempera- 
t u re s  involved, w a s  l e s s  than one-half of 1 percent (see ref. 10). 
fo r  t he  sample i s  

A tungsten-strip lamp serves as a standard source of constant and 
Planck's law o r  Wien's law may be writ ten f o r  

Wien's l a w  i s  simpler t o  use and was used 

Wien's l a w  

where WA, 
sample, 
A, and c l  and c2 are  the  first and second thermal radiation constants. WhS 
is  the  time rate of emission of radiant energy per uni t  in te rva l  of wavelength 
throughout 231 
temperature Ts. 

i s  the  hemispherical spectral  radiant in tens i ty  per uni t  area of the 

 EA^ i s  the hemispherical spectral  emittance of the sample at  wavelength 

steradians per uni t  of area of t he  sample at absolute 

Wien's l a w  f o r  the standard lamp i s  
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where 
tungsten s t r i p  of t he  lamp, 
lamp, and TL i s  t he  t rue  absolute temperature of t h e  lamp. The l e f t  sides of 
t he  two Wien’s l a w  equations may be expressed i g  terms of the  oscillographic 
measurements on sample and lamp. 
and lamp temperatures by t h e  following expression: 

Wu is  the  hemispherical spectral  radiant in tens i ty  per un i t  area of the  

E ~ T _ I  i s  the  hemispherical spectral  emittance of t he  

These measurements are related t o  the  sample 

where 
t h e  other symbols are as defined earlier. Solving equation (7)  f o r  Ts gives 

EhL i s  the  standard lamp oscillographic amplitude i n  arbitrary un i t s  and 

where 

= A constant incorporating a change from natural  ( 9 )  
t o  common logarithms and absorbing A / c ~  

The constant kA 
e t e r  and i s  d i rec t ly  re la ted t o  t h e  effect ive wavelength of response of t h e  image 
pyrometer. The value of kA may be determined by operation of the  pyrometer 
with the  standard lamp set successively at  two d i f fe ren t  temperatures, 
T2L. The resultant expression f o r  kh i s  

i s  a function of the  f i l t e r  and detector system i n  the  pyrom- 

T1L and 

- T2L kA = 

where Tu and T2L are the  higher and lower temperatures of t he  lamp, respec- 
tively, and €2hT_I are the  spec t ra l  emittances of t h e  lamp corresponding 

are the  oscil lographic amplitudes t o  t h e  two temperatures, and 
corresponding t o  the  two temperatures. The value of kA thus determined can 
be used t o  determine the  sample temperature by i t s  subs t i tu t ion  i n t o  equation (8) 
with t h e  oscillographic data  from t h e  l a p  at e i t h e r  temperature. 

and E2AL ElhL 

Because of the  unavai labi l i ty  of spec t ra l  hemispherical emittance data on 
tungsten-strip lamps at high temperatures, spec t ra l  normal emittance da ta  were 
used i n  equations (8) and (10). 
ribbon filament has been t h e  subject of considerable study because of i t s  use as 

The spec t ra l  normal emissivity of tungsten 
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a radiation standard. 
covering a broad range of wavelengths and temperatures are considered the most 
re l iab le  available. The data of DeVos were used here. 
emittance of tungsten are not equal because it does not emit i n  accordance with 
Lambert's cosine l a w ,  but studies by Worthing ( r e f .  13) and by Blau, e t  a1 
( r e f .  14)  indicate tha t  hemispherically-measured values would not be more than 
6 o r  7 percent greater  than normally-measured values. 

The data of DeVos ( re f .  11) and Larrabee ( r e f .  12) ,  

Normal and hemsipherical 

-NT PROGRAM AND RESULTS 

Optical F i l t e r s  

The image pyrometer was  delivered with an RCA -22 photomultiplier and a 
Corning No. CS2-59 red glass  f i l t e r ,  w i t h  an effective wavelength of about 
0.7 micron. I n  order t o  cover the en t i re  vis ible  spectrum, f ive  f i l t e r s  spaced 
a t  nearly equal intervals  throughout the v is ib le  spectrum and covering a narrow 
region of t he  near ul t raviolet  were selected or constructed. Two of the f i l t e r s  
were a Kodak Wratten No. 1 8 ~  glass f i l t e r  and the  Corning No. CS2-59 which was 
supplied with the  image pyrometer. 
mounting Kodak Wratten ge l a t in  f i l m  i n  Canada balsam cement between two t h i n  
layers of opt ical ly  f l a t  glass.  
lapped, Kodak Wratten Nuabers 21 and 64 overlapped, and Kodak Wratten N o .  70. 
Tests were made t o  assure tha t  the temperature i n  the f i l t e r  receptacle of the 
pyrometer during furnace operation stayed within safe l i m i t s  f o r  use of the 
Wratten f i l t e r s .  An RCA -21 photomultiplier w a s  used with all the  f i l t e r s  
except the  Kodak No. 70, which was matched with the RCA 1p22 photomultiplier. 

The other three f i l t e r s  were constructed by 

These were Kodak Wratten Numbers 45 and 476 over- 

The effect ive wavelength of measurement f o r  each f i l t e r  was determined by 
taking the  t r i p l e  product of the  f i l t e r  transmission curve, the photomultiplier 
re la t ive  response curve, and the  re la t ive  spectral  hemispherical radiant intensi ty  
curve f o r  t he  standard lamp at 2,900' K t o  obtain a product curve representing the 
combined spectral  response of the  source-filter-detector system. 
figure 4 shows t h i s  determination f o r  Kodak f i l t e r  18~. 
uct curve w a s  divided into two equal parts, and the dividing l i n e  w a s  taken as the 
def ini t ion of the effect ive wavelength. 
above method were approximately 1 t o  4 percent lower than those calculated by 
equation (9).  Data were plotted as a function of the effect ive wavelength values 
determined from the product curves. 

A s  an example, 
l The area under the prod- 

The wavelength values determined by the 

Temperature Control 

The measurements of reflectance and temperature i n  t h i s  investigation were 
obtained i n  every case ir? the  region of h l g h e s t  siirfizce temperature on the sample, 
after the  sample had attained steady-state conditions. 
of temperatures, neutral-density f i l t e r s  were constructed of 10- and 20-mesh 
brass cloth t o  reduce the intensi ty  of i r radiat ion of the sample. 
was mounted on a ring designed t o  f i t  the  circumference of the mirror a t  the arc  
end of t he  a rc  imaging furnace, with a 6-inch-diameter hole i n  the region of the 

I n  order t o  cover a range 

Each wire cloth 
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arc .  
w a s  t o  preserve the hemispherical character of the measurements and t o  avoid 
shadowing the midpoint image of the arc. 
perature control would yield more rel iable  and consistent data than those obtain- 
able from measurements during temperature r i s e  o r  f a l l  of the sample, o r  from 
measurements made a t  points across the temperature gradient t ha t  ex is t s  on the 
surface o f t h e  sample. 
by any of these methods with the image pyrometer. 

The purpose of t h i s  particular method of attenuation of the  arc  i r rad ia t ion  

It w a s  believed t h i s  approach t o  tem- 

Data covering a range of temperatures could be obtained 

Material. Samples 

Samples of all the  materials studied were discs 1/2 inch i n  diameter and 
3/16 inch i n  thickness. For each temperature and reflectance measurement, one 
of the discs was mounted i n  a s m a l l  steel block, the sample being supported i n  
and insulated from the  block by four equally spaced, spring-loaded zirconia pins 
of 7/64-inch diameter, sharpened at the points of contact w i t h  the  periphery of 
the sample. Measurements were made on one circular  face of the disc, which was 
located i n  t he  minor focal  plane of the re-imaging mirror with i t s  center on the 
optical. axis of the arc  imaging  furnace mirrors. 

Surface-Roughness Measurement 

Measuring surface roughness and expressing the measurements quantitatively 
i n  terms t h a t  are  d i rec t ly  re la table  t o  emittance o r  reflectance i s  a d i f f i c u l t  
problem. Standard surface-roughness parameters, such as arithmetical o r  root- 
mean-square average deviation from the  center l i n e  o r  roughness width ( fo r  defini-  
tions, see r e f .  l'j), inadequately define a surface f o r  l ight-ref lect ing or  l igh t -  
emitting purposes, because several surfaces may have ident ical  values of these 
parameters and yet have different  ref lect ing o r  emitting character is t ics .  
ra ther  general practice i n  the  f i e l d  of emittance measurement i s  t o  define the 
surface properties of a material by describing the  method of surface preparation 
previous t o  the emittance measurement. 
l imitations are apparent, since it i s  the microgeometry of the  surface i t s e l f  
rather than the method of surface preparation t h a t  i s  potent ia l ly  re la table  t o  
emittance and reflectance. 
face f inish may re ta in  i t s  i n i t i a l  character throughout the  his tory of the 
emittance-measurement operation, but f o r  measurements a t  high temperatures the  
surfaces of many materials w i l l  experience a l te ra t ions  which w i l l  i n  most cases 
depend on the  par t icular  environment surrounding the  sample. 
emittance data can be more meaningfully defined by describing previous surface 
treatment ar,d, i n  addition, describing the  surface f in i sh  following the  measure- 
ment. 
taneous emittance and surface-roughness data  on a sample a t  elevated temperature 
i s  recognized. However, i n  many cases, changes occurring i n  surface conditions 
are most pronounced during the  heating or  soaking par t  of the  temperature cycle, 
and measurements of surface roughness at termination of the emittance measurement 
and cooling of the sample represent the surface at elevated temperature, except 
fo r  thermal expansion. 
define surface preparation on samples before t e s t ing  and t o  define the surface 
roughness following the reflectance measurements. 

A 

Perhaps t h i s  approach has merit but i t s  

For ambient- o r  low-temperature measurements the sur- 

It appears t ha t  

The experimental d i f f i cu l ty  and perhaps impracticali ty of obtaining simul- 

An attempt has been made i n  the  present investigation t o  

Measurements of surface 
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roughness were obtained with a Carl Zeiss Light-Section Microscope, the operation 
principles of which were discussed ear l ie r ,  and the measurements were t reated by 
a s t a t i s t i c a l  method suggested by Posey (ref. 16) which seems t o  characterize the 
roughness of a prof i le  quite completely. 
f i g .  9 ) .  One i s  an x-y prof i le  curve formed from the  microscope measurements, the 
ordinates representing the varying distances of the prof i le  above a base l i n e  
passing through the deepest valley of the profile, and the  abscissas x repre- 
senting distances along the prof i le  measured pa ra l l e l  t o  the base l i ne .  A second 
curve, representing the slope of the prof i le ,  i s  a plot of values of y '  = dy/dx ,  
and a t h i r d  curve i s  a plot  of values of y" = ds/dx2, which represents approxi- 
mately the  degree of curvature of the  x-y prof i le  f o r  s m a l l  values of 
dividing the range of values of y in to  several equal increments and determining 
the percentage of the  t o t a l  distance 
increment, a histogram of y-values can be plotted i n  the y-direction a t  the r ight  
end of the x-axis. Similarly, histograms can be formed t o  represent the slope 
dis t r ibut ion and degree-of-curvature distribution. 

Three curves are employed (e.g., see 

y 

y ' .  By 

x f o r  which the curve l i e s  within each 

Measurements on Carbon and Graphite 

Spectral emittance and reflectance data were obtained on National Carbon 
Company's AGKSP graphite and Lll3SP carbon, both high-purity spectroscopic grades 
of materials, at three temperature levels.  To assure tha t  all samples of each 
material had l i k e  surfaces before testing, the  surface of each graphite and carbon 
d isc  t o  be exposed t o  the furnace radiation was polished successively with 0, 3/0, 
and 4/0 grades of emery polishing paper, resulting i n  a f i n a l  glossy f in i sh .  Upon 
exposure i n  air  t o  the  arc  image thermal flux, t h i s  surface quickly oxidized t o  a 
stably rough surface. Each sample was exposed f o r  approximately the  same length 
of time at each temperature level.  I n  every case the exposure w a s  long enough f o r  
the sample t o  a t t a i n  i t s  maximum steady-state temperature but not long enough t o  
permit appreciable recession of the surface on which the image pyrometer measure- 
ments were being made. 
attenuation t o  t h a t  produced by the 20-mesh f i l t e r ,  average temperatures varied 
from 5,275' F t o  3,285' F on carbon and from 4,855' F t o  3,250' F on graphite, 
as shown i n  figures 5 t o  8, where emittance and reflectance data a re  presented 
as a function of wavelength f o r  each temperature and as a function of temperature 
f o r  each wavelength. Duplicate measurements were made f o r  each par t icu lar  s e t  of 
conditions, with the exception tha t  t r i p l i c a t e  measurements were made on graphite 
at  i t s  highest temperature. 

Varying arc  i r radiat ion l eve l  from conditions of no 

The spec t ra l  emittance measured a t  the 5,000' F temperature leve l  i s  nearly 
constant f o r  both graphite and carbon from 0.37 micron t o  about 0.55 micron, 
being about 0.96 fo r  graphite and 0.97 f o r  carbon, and beyond t h i s  wavelength it 
decreases gradually t o  about 0.89 fo r  both materials. A t  lower temperatures the 
materials also show a decrease i n  emittance with increasing waveler@k: ir, the red 
par t  of the spectrum and a tendency toward increasing emittance with decreasing 
temperature. Directional measurement of spectral  reflectance a t  a 4 5 O  angle from 
the normal t o  the material surface on these same grades of graphite and carbon 
under s i m i l a r  test  conditions by Null and Lozier ( r e f .  17) produced values of 
emittance i n  reasonable agreement with those obtained i n  t h i s  investigation, fo r  
the  spec t ra l  range common t o  the two s e t s  of data. Although Null and Lozier did 
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not report  data beyond about 0.60 micron, they indicated t h a t  t h e i r  measurements 
had shown a t r e n d  toward increasing reflectance at longer wavelengths, and the 
measurements of other investigators a lso have shown t h i s  trend, as indicated i n  
reference 18. 

Surface-roughness data on graphite and carbon are  presented i n  f igures  9 
and 10, where y, y ' ,  and y" are plot ted as a function of x at x-intervals 
of 25 microns and t h e i r  histograms are shown at the  r ight  ends of the  curves. 
The roughness measurements covered a 1,225-micron length of surface near the  ten- 
t e r  of t he  surface on which the  emittance measurements were made. This length i s  
about 1/10 t h e  diameter of the  sample. 

Measurements on Zirconia 

Zirconia emittance samples were machined from Norton Company's RZ-5723 
zirconia (94.37 percent ZrO2, 3.73 percent C a O ) ,  supplied i n  1/2-inch-diameter 
rod. The rod was cut in to  discs, the  surfaces of which were f inished with a 
N100-0220 diamond wheel. 
sonically cleaned i n  d i s t i l l e d  water. Attenuation of t h e  a rc  i r rad ia t ion  with 
the  10-mesh f i l t e r  w a s  suff ic ient  t o  ju s t  m e l t  a s m a l l  spot of about 1/8-inch 
diameter on t he  center of the  sample surface. Under these conditions t h e  tem- 
perature measured would be expected t o  be very close t o  the  melting point of 
zirconia. The temperature values measured at four d i f fe ren t  wavelengths ranging 
from 0.46 micron t o  0.72 micron averaged 4,893O F with only about a 1-percent 
m a x i m u m  deviation from t h i s  f o r  t he  eight tes ts  shown i n  the  lower curve of f ig -  
ure  11. 
20, and 21) range from 4,850° F t o  4,920' F. The consistency of t h e  data  obtained 
here with those reported i n  t h e  l i t e r a t u r e  attests t o  the  temperature-measurement 
r e l i a b i l i t y  of t h e  i m a g e  pyrometer. Few spec t ra l  emittance data are available 
on zirconia at temperatures between 4, OOOo F and 5, OOOo F. 

H i s  data a t  
are about 7 o r  8 percent lower than those found i n  t h i s  investigation. 

A f t e r  the  machining operation t h e  samples were ultra- 

Reported values f o r  t h e  m e l t i n g  temperature of zirconia (see refs. 19, 

Cox ( see ref.  
has reported unidirectional measurements at 0.665 micron. 

Emittance and temperature were determined f o r  diamond-wheel-finished samples 
of  zirconia using t h e  20-mesh f i l t e r ,  and t h e  r e su l t s  are shown as a function of 
wavelength i n  t h e  upper curve of f igure 11. 

Special roughness treatments were given t o  samples of t h e  diamond-wheel- 
f inished zirconia t o  provide three gradated rougher surfaces. 
obtained by gr i t  blast ing with Norton No. 90-120 ZrO2 g r i t  and t h e  other two sur- 
faces w i t h  No. 120-150 and NO. l5OF g r i t .  Emittance and temperature were deter-  
mined w i t h  the  20-mesh f i l t e r  t o  maintain t h e  temperature below t h e  melting point, 
and at wavelengths of 0.46 micron and 0.63 micron. 
three grit-blasted surfaces were essent ia l ly  t h e  same f o r  each wavelength and 
did not d i f f e r  s ignif icant ly  from those values measured on t h e  diamond-wheel- 
f inished surfaces, as can be seen i n  f igure  11. 
roughness a re  demonstrated i n  figures 1 2  t o  15. 
ferences among t he  four profile-slope d is t r ibu t ions  and the  four profile-curvature 
distributions.  There are  noticeable differences among t h e  y-distributions, and 
the  m a x i m u m  peak-to-valley depth of t h e  diamond-wheel-finished surface i s  only 

The roughest w a s  

Emittance measurements on t h e  

The four  gradations of surface 
There appear t o  be no large dif-  
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about half the values f o r  the three grit-blasted surfaces. No attempt i s  made 
herein t o  assess the significance of differences or  s imi la r i t i es  among the dis t r i -  
butions of any one type with respect t o  emittance. The independence of measured 
reflectance and calculated emittance on the roughness differences exhibited here 
indicates that  there i s  no significant influence of such roughness differences on 
the emittance of zirconia i n  the v is ib le  spectrum. 

The explanation f o r  the independence of emittance on surface roughness may 
l i e  i n  the transmission characterist ics of zirconia f o r  l imited thicknesses of the 
material. 
i s  not well known, but it i s  indicated i n  reference 22 tha t  the thickness required 
fo r  opacity varies from about 0.16 inch a t  room temperature t o  0.05 inch a t  the 
melting point. It can be seen from the surface prof i le  data i n  figures 12 t o  15 
tha t  the maximum values of y are much l e s s  than 0.05 inch (1,250 microns), and 
consequently, the i r regular i t ies  i n  the surface would have l i t t l e  influence on the 
emittance and reflectance i f  zirconia has high transmittance up t o  t h i s  thickness. 
Another possible factor  in  the behavior is that f o r  some types of surfaces, emit- 
tance and reflectance may be l i t t l e  influenced by the surface roughness when these 
quantit ies a re  measured hemispherically f o r  hemispherical illumination. Unidirec- 
t iona l  measurements a t  some particular angle might show influences of surface 
roughness tha t  would be averaged out i n  hemispherical measurements. 
experimental and/or analyt ical  studies would be required t o  ver i fy  o r  nu l l i fy  t h i s  
possibi l i ty .  

The transmittance of zirconia f o r  v i s ib le  radiation a t  high temperatures 

Further 

Surface-roughness data are  not presented on the melted zirconia surface 
because the m a x i m u m  values of y were of the order of one micron, the lower 
l i m i t  of measurement of the light-section microscope. 

Measurements on Phenolic-Nylon Ablation Char 

A phenolic-nylon was chosen as the ablation material f o r  study i n  t h i s  

I 
1 

program. 
phenolic res in  and 50 percent by weight of nylon powder. 
form was about 75 lb/ft3.  
ent methods t o  form char residue. I n  one case the  material was heated i n  an oven 
which w a s  constantly purged with nitrogen at a pressure s l igh t ly  greater than 
atmospheric. 
r i s e  of 75' F/hr u n t i l  t he  material reached 1,500° F. The material was sustained 
at  t h i s  temperature f o r  three hours and then cooled t o  room temperature at a r a t e  
equal t o  the  temperature-rise ra te .  
38 1b/ft3. The phenolic-nylon was reacted i n  cylindrical  form and the charred 
cylinders w e r e  subsequently cut by standard machining operations into discs f o r  
emittance samples. 

The phenolic-nylon was molded from a mixture of 50 percent by weight of 
The density i n  molded 

The phenolic-nylon w a s  thermally reacted by two differ-  

The oven w a s  controlled t o  produce an average ra te  of temperature 

The density of the char formed w a s  about 

These discs were given no special  surface treatments. 

I n  the  other  case 3-inch-diameter discs  of t he  phenol-ic-nylon were exposed 
t o  an electric-arc-heated subsonic stream of nitrogen f o r  165 seconds, the time 
required t o  produce a char layer  of about 3/16-inch thickness. 
described more completely i n  reference 2, w a s  operated with a 2-inch-diameter 
nozzle and with a rc  power of 1,000 kilowatts. 

phenolic-nylon d iscs  located 2 inches from the nozzle. 
perature a t ta ined by the  char layers during the i r  formation was about 3,000' F. 

The arc je t ,  

Under these operating conditions 
the a rc  j e t  produced an aerodynamic thermal flux of about 100 Btu/ft 2 -sec on the 

The m a x i m u m  surface tem- 
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The density o f  t he  chars w a s  21 lb/f t3 .  
t he  char layers f o r  emittance samples. 
preparation, and reflectance measurements were made on the  surface tha t  had been 

Discs of 1/2-inch diameter were cut from 
The discs  were given no special  surface 

, exposed t o  the arc-heated nitrogen strearc. 

There is a considerable difference i n  t h e  densi t ies  of the chars produced by 
t h e  two different  methods of heating. The two chars are d i f fe ren t  i n  appearance, 
t h e  most dis t inct ive feature  being the  columnar s t ructure  of t h e  arc-jet-formed 
char, produced by the rapidly escaping gases as they flow from the zone of reac- 
t i o n  through t h e  growing char layer, as contrasted with the  homogeneous s t ructure  
of t he  oven-formed char. The chars produced i n  the  a rc  j e t  undergo a reaction 
process w h i c h  i s  more simulative of the  actual  conditions of ablation char forma- 

It i s  
d i f f i c u l t  t o  obtain chars formed under dynamic heating conditions i n  any form 
other than re la t ive ly  t h i n  layers. 
greater  var ie ty  of shapes and sizes under s t a t i c  heating conditions. 
methods of measuring thermal conductivity, thermal expansion, spec i f ic  heat, and 
other thermal properties require samples of geometry not readily obtainable from 
material i n  thin-sheet form. 
of chars t o  acquire a more complete understanding of ablation-type thermal protec- 
t i o n  systems produces an in t e re s t  i n  t h e  s imi la r i ty  o r  d i ss imi la r i ty  of thermal- 
physical properties of chars produced by different  methods. The two differently- 
formed chars were investigated here t o  determine whether the emittance i s  signif-  
i can t ly  influenced by the  method of char formation. 
used i n  both reaction methods t o  prevent loss of chars from oxidation. 

l t i o n  on reentry vehicle heat shields than t h a t  of t he  oven-produced chars. 

On t h e  other hand, chars can be formed i n  a 
Standard 

I 

I 

The des i r ab i l i t y  f o r  measurement of such properties 

A nitrogen environment w a s  

The emittance and reflectance of t h e  chars are  shown as a function of wave- 

Both bear 
length and temperature i n  f igures  16 t o  19. 
oven-produced char i s  s l igh t ly  higher than the  arc-jet-produced char. 
a resemblance t o  graphite and carbon, i n  t h a t  t h e  emittance drops i n  the  red 
region of the spectrum and i n  t h a t  there  i s  a tendency toward decreasing emittance 
with increasing temperature. The resemblance of emittance-temperature pat terns  
of the chars t o  those of graphite and carbon i s  not unexpected, inasmuch as the  
chars themselves are carbonaceous. 

I n  general, t h e  emittance of t h e  

Under ident ica l  t e s t  conditions higher surface temperatures were measured 
A l l  t h e  measurements on the  chars than those measured on graphite and carbon. 

were m a d e  i n  a i r  at atmospheric pressure, and a plausible  explanation f o r  the 
higher char temperatures i s  t h a t  t h e  porosity of t h e  chars rendered them more 
susceptible than carbon and graphite t o  rapid oxidation. 
oxidation process would increase the  sample temperature beyond tha t  expected f o r  
conditions of less severe o r  no oxidation. 

The rapid exothermic 

Surface-roughness data on t h e  chars are presented i n  figures 20 and 21. 
roughness measurements were made on samples f o r  which emittance measurements had 
been made a t  t h e  highest temperatures. 

The 
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EVALUATION OF RESULTS 

No attempt was made i n  t h i s  investigation t o  determ-ne the absolute accuracy 
of the measurements obtained because of the  lack of high-temperature reference 
standards. All the resu l t s  presented are considered rel iable .  Reasonable agree- 
ment has been shown t o  exis t  between the resul ts  reported here and data reported 
by other recent investigators. 
material were closely reproducible. 

I n  general, measurements on l i k e  samples of a 

Certain additional unreported measurements of surface roughness on carbon 
were made t o  determine whether a 1,225-micron length of p rof i le  was suff ic ient  
t o  accurately represent the  surface and t o  determine whether the carbon sanrple 
measured w a s  typical.  The histogram resul ts  were not appreciably changed when 
the  length of prof i le  examined w a s  doubled, and histograms of two separate samples 
which had experienced l i k e  t e s t  conditions showed no significant difference. 
i s  assumed tha t  similar additional measurements on the other materials studied 
would also be consistent with those tha t  were measured and reported. Since the  
geometries of the  surfaces studied here a re  expected t o  be randomly irregular,  
with no directional surface quali t ies,  the l imitation of the roughness measure- 
ments t o  one a rb i t ra ry  direction is  considered suff ic ient .  Arc-image heating of 
the  sample was instantaneously terminated at the  end of each reflectance measure- 
ment, and subsequently surf ace-roughness measurements were made. Therefore, the 
roughness measurements should be a good representation of surface conditions 
during reflectance measurement. 

It 

Surface-roughness data are  included i n  t h i s  study primarily as a suggested 
method of more completely defining emittance data, w i t h  no attempt here t o  
d i rec t ly  r e l a t e  emittance and surface roughness. However, it i s  believed tha t  
data  of the  type presented here are sufficient t o  determine the dependence of 
emittance (hemispherical o r  unidirectional)  on surface roughness f o r  any par- 
t i c u l a r  material, i f  the  emittance of a specularly-reflecting surface element of 
t he  material and the geometrical dis t r ibut ion of emitted radiation f o r  all direc- 
t ions  over a hemisphere a re  known f o r  the element of surface. 

For values of the  slope great ly  different from zero, 
approximate the curvature of the  x-y prof i le .  
roughness data  probably would require determination of t he  t rue curvature from 
the  corresponding y I- and y'l-values. 

y" does not closely 
AnalTytical use of the surface- 

It i s  not possible, at the  present t i m e ,  t o  predict  the t o t a l  radiation char- 
a c t e r i s t i c s  of the  phenolic-nylon ablation material chars because only about 
20 percent of t he  t o t a l  radiation from a black body at 6,000' F l i e s  within the 
v i s ib l e  spectrum. 
w i t h  additional data  extending t o  about 3 microns t o  give a picture of t o t a l  
emittance character is t ics .  
pyrometer with cer ta in  innovations. 

The data obtained i n  t h i s  study would have t o  be supplemented 

Such data cculd zcnceivabiy be obtained from the i m a g e  

Spectral  emittance i s  equivalent t o  spectral  absorptance at a par t icular  
temperature. Therefore, the  data reported herein are potent ia l ly  useful f o r  
evaluation of t he  absorptance of phenolic-nylon char f o r  radiation from any source 
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e m i t t i n g  strongly i n  the  v i s ib l e  spectrum. 
t h e  energy spectrum of radiation from shock-heated a i r  associated with cer ta in  
types of reentry operations may be i n  the  v is ib le  region. 

I n  particular,  a s ignif icant  par t  of 

CONCLUDING RENAFXS 

Special op t ica l  techniques have been applied t o  emittance studies on mate- 
r ials a t  high temperatures and have been shown t o  be useful f o r  obtaining e m i t -  
tance and temperature data on ablation material chars needed f o r  assessing t h e i r  
performance i n  thermal protection systems of space vehicles. The investigation 
consisted of an evaluation of a recently-developed method of measuring reflectance 
and temperature, with adaptation and use of t he  method f o r  obtaining measurements 
of spectral  reflectance on cer ta in  carbonaceous and ceramic materials over a wave- 
length range from 0.37 t o  0.72 micron and over a temperature range from 3,000' F 
t o  6,000~ F. The microgeometries of the  surfaces on which reflectance w a s  meas- 
ured were s t a t i s t i c a l l y  defined. 

The apparatus employed f o r  reflectance and temperature measurement w a s  an 
Arthur D. Little-Strong Arc Imaging Furnace and an image pyrometer designed f o r  
operation i n  conjunction with the  e l l ipso ida l  a rc  imaging furnace. A s  a par t  Of 

t he  evaluation of t he  experimental apparatus, measurements of t he  reflectance of 
graphite and carbon were made f o r  t he  comparison of r e su l t s  with the  data of other 
recent investigators of these materials. The r e su l t s  obtained agreed reasonably 
with those o f  the  other investigators.  I n  addition, measurements were made on 
zirconia at i t s  melting point t o  confirm the  temperature-measurement accuracy of 
t he  i m a g e  pyrometer, within the  accuracy with which t h e  melting point of zirconia 
has been determined. 

Hemispherical spectral  emittance (absorptance) of phenolic-nylon ablation 
char w a s  determined at wavelengths from 0.37 t o  0.72 micron and at  temperatures 
from 4,000° F t o  6,000~ F. 
infrared data, t h e  thermal radiation properties of t h e  char f o r  t he  associated 
temperature range can be completely determined and used i n  assessing i t s  e f f i -  
ciency i n  radiation cooling. Relatedly, t he  da ta  obtained here can be used t o  
determine the absorptance of t he  char f o r  v i s ib l e  radiat ion from shock-heated 
a i r  associated with cer ta in  types of reentry operations. 

If these data  are supplemented with additional 

An attempt w a s  m a d e  t o  qualify the  emittance data on all t h e  materials with 
surface-roughness data pertinent t o  the  t i m e  a t  which emittance w a s  determined. 
Measurements of surface roughness were performed with a Carl Zeiss Light-Section 
Microscope, and the measurements were s t a t i s t i c a l l y  t r ea t ed  t o  y ie ld  da ta  t h a t  
appear amenable t o  analyt ical  study re la t ing  emittance and surface roughness. 
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